EDM12864B

图形点阵式液晶显示模块 使用说明

大连东福彩色液晶显示器有限公司

Model No.: Editor:

目录

1.	使用范围	3
2.	质量保证	3
3.	性能特点	3
4.	外形图	7
5.	I/O 接口特性	7
6.	质量等级1	.3
7.	可 靠 性1	.5
8.	生产注意事项1	.6
9.	使用注意事项1	7

1. 使用范围

该检验标准适用于大连东福公司设计提供的标准液晶显示模块。如果在使用中出现了异常问题或没有列明的项目,建议同最近的供应商或本公司联系。

2. 质量保证

如在此手册列明的正常条件下使用、储存该产品,公司将提供12个月的质量保证。

3. 性能特点

3-1.性能:

STN LCD

显示颜色: 「显示点:深蓝色

し 背景: 黄绿色

显示形式: 128(w) × 64 (h) 全点阵

输入数据: 来自 MPU 的 8 位串行数据接口

驱动路数: 1/64 Duty

视 角 : 6点

3-2. 机械性能:

项 目	规格	单位
外形尺寸	93.0 (W) \times 70.0(H) \times 15.0Max.(T)	Mm
显示点阵数	128 (W) × 64 (H) Dots	_
视 域	72.0(W) × 40.0 (H)	Mm
显示图形域	66.52 (W) × 33.24 (H)	Mm
点间距	0.48 (W) × 0.48 (H)	Mm
点尺寸	0.44 (W) × 0.44 (H)	Mm
重量	Approx.	G

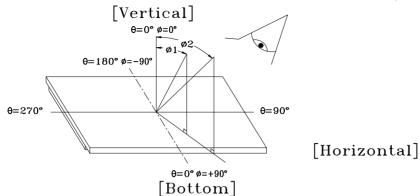
3-3. 极限参数:

项	目	符号	最小值	最大值	单位	注 释
电源电压	逻辑	Vdd	0	6.0	V	
电源电压	LCD 驱动	Vdd – Vee	0	16.0	V	
输入电压		Vi	0	Vdd	V	
操作温度		Тор	0	50		
储存温度		Tstg	-20	60		
湿度			_	90	%RH	

3-4. 电气特性:

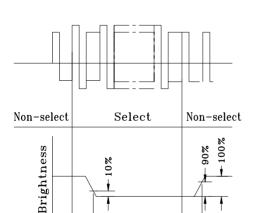
3-4-1 电气参数

项		符号	条件	最小值	典型值	最大值	单 位
电源电压	逻辑	Vdd		4.5	5.0	5.5	
电源电压	LCD 驱动	Vdd-Vee		14.5		_	V
输入电压	高电平	Vih	$Vdd=5V \pm 5\%$	0.8Vdd		Vdd	V
1 割八电压	低电平	Vil		0		0.2Vdd	
频 率		Fflm	Vdd=5V	70	75	80	Hz
功耗	逻辑	Idd	Vdd=5V Vdd-Vee= 12V	_	1.6	2.0	mA
功,不	LCD 驱动	Iee	Fflm=75Hz	_	0.15	0.2	IIIA
			Ta= 0 =0 ° , =0 °	_	12.5		
	驱动电压 享电压)	Vdd-Vee	Ta= 25 =0 ° , =0 °		12.0	_	V
			Ta= 50 =0 ° , =0 °	_	11.5		

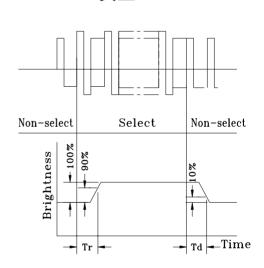

Note: <1> 驱动路数=1/64

<2> 所有点在静态条件下

3-5. 电光特性

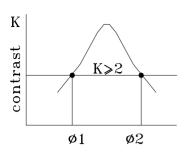

J	项 目	符号	温度	条件	最小值	典型值	最大值	单位	注释
LCD	驱动电压		0			5.2	6.0		
	を	V_{LCD}	25	=0 ° , =0 °	4.7	5.0	5.5	V	1,2,5
(1)	E1子巴瓜)		50		4.5	5.0			
响	上升时	++1	0			1500	2000		
应	间	tr	25	=0°, =0°		150	200	Ms	1,3,5
时	衰 退 时	td	0	=0 , =0		3000	3500		
间	间	tu	25			200	250		
	No. 4-		2.5	垂直	-35		35		
	视 角		25	水平	-30	_	30	deg.	1,4,5
5	对比度	K	25	=0 ° , =0 °	2.0	5.0			1,5,6

注意: <1> 和 的定义 <2> 在此电压范围内能获得对比度大于 2(k 2)

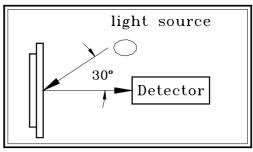


注意:<3> 响应时间波形定义

正显

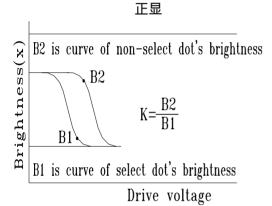

注意:<4>视角定义

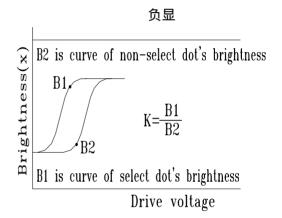
→ Tr -


() = | 1- 2|

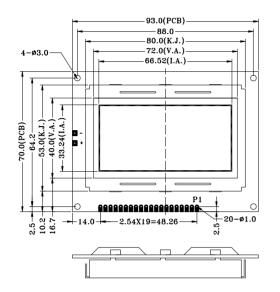
Time

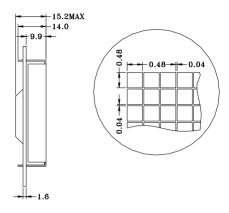
注意:<5> 光学测量系统温度控制室




Viewing angle

Measuring equipment: DMS (Made in AUTRONIC)


注意:<6> 对比度定义(K)

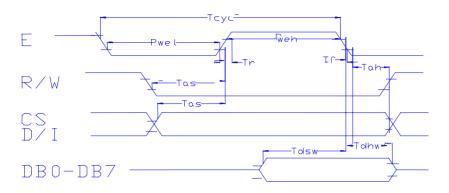


正显 对比度(K)= 非选择点的亮度(B2) 选择点的亮度(B1)

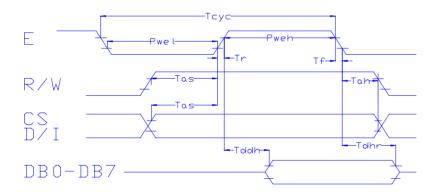
4. 外形图

PIN#	1	2	3	4	5	6	7	8	9	10
SYM.	VSS	VDD	VEE	D/I	R/W	E	DBO	DB1	DB2	DB3
PIN#	11	12	13	14	15	16	17	18	19	20
SYM.	DB4	DB5	DB6	DB7	CS1	CS2	RST	VEE	BL+	BL-

5. I/O 接口特性


5-1. I/O 接口表:

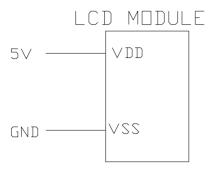
管脚号	管脚名称	电平	功能描述
1	VSS		电源地:0V
2	VDD		电源电压: +5V
3	VEE	-	LCD 驱动电压
4	D/I	H/L	D/I="H"时表示 DB7~DB0 为显示数据
			D/I="L"时表示 DB7~DB0 为指令数据
5	R/W	H/L	R/W="H",E="H" 数据读到 DB7~DB0
			R/W="L",E="H->L" 数据写到 DB7~DB0
6	Е	$H.H \rightarrow L$	使能信号: R/W="L" E 信号下降沿锁存 DB7~DB0;
			R/W="H" E="H" DD RAM 数据读到 DB7~DB0
7-14	DB0~DB7		数据总线
15	CS1	H/L	高电平有效,CS1=1,CS2=0 选择左半屏,相反则选右半屏
16	CS2	H/L	高电平有效,CS1=1,CS2=0 选择左半屏,相反则选右半屏
17	/RST		低电平时复位
18	VEE		LCD 驱动电压
19	BL+	_	背光
20	BL-	-	背光


第 7 页 共 17页

5-2. 时序及时序图:

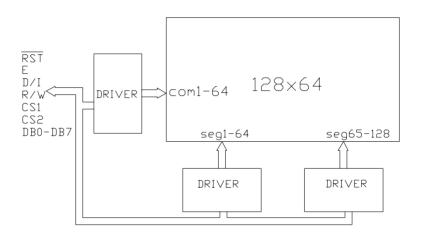
1) 写操作时序

2)读操作时序



注: RS 信号时序同 D/I 信号时序.

3)接口时序参数


名 称	符号	最小值	典型值	最大值	单位
E 周期时间	Tcyc	1000	ı	ı	ns
E 高电平宽度	Pweh	450	ı	ı	ns
E 低电平宽度	Pwel	450	ı	ı	ns
E 上升时间	Tr	-	-	25	ns
E下降时间	Tf	-	1	25	ns
地址建立时间	Tas	140	-	-	ns
地址保持时间	Tah	10	1	1	ns
数据建立时间	Tdsw	200	-	-	ns
数据延迟时间	Tddr	-	-	320	ns
写数据保持时间	Tdhw	10	-	-	ns
读数据保持时间	Tdhr	20	-	-	ns

5-3. 电源连接图

5-4. 电路图解

LCD 模块需逻辑电压(Vdd).

注释: 当信号线直接连到 C - MOS 电路且没有内部上拉或下拉电阻时,有必要隔离外部干扰来保护信号线。

5-5、软硬件注解

5-5-1 模块组件的内部结构

从图 5-4-1 可以看出,模块由 LCD 显示屏、控制器、列驱动器组成。 控制电路主要由指令寄存器 (IR),数据寄存器 (DR),忙标志(BF),显示控制触发器(DFF),XY 地址计数器

指令寄存器(IR)

IR 用来寄存指令码.当 D/I=0 时.在 E 信号下降沿的作用下.指令写入 IR。

数据寄存器(DR)

DR 是用来寄存数据的。当 D/I=1 时,在 E 信号的作用下,图形显示数据写入 DR,或由 DR 读到 DB7~DB0 数据总线。 DR 和 DD RAM 之间的数据传输是组件内部自动执行的。

忙标志(BF)

BF 标志组件内部的工作情况。BF=1 表示组件在进行内部操作,此时组件不接受外部指令和数据。BF=0 时,组件为准备状态,随时可接受外部指令和数据。

显示控制触发器(DFF)

此触发器是用于控制组件屏幕显示的开和关。DFF=1 为开显示,DD RAM 的内容就显示在屏幕上,DFF=0 为关显示。

XY 地址计数器

XY 地址计数器是一个9位计数器。高三位是X 地址计数器,低 6位为Y 地址计数器。XY 地址计数器实际上是作为 DD RAM 的地址指针,X 地址计数器为 DD RAM 的页指针,Y 地址计数器为 DD RAM 的 Y 地址指针。

显示数据 RAM(DD RAM)

DD RAM 是存储图形显示数据的。数据为 1 表示显示选择,数据为 0 表示显示非选择。 DD RAM 与地址和显示位置的关系见 DD RAM 地址表。

Z 地址计数器

Z 地址计数器是一个 6 位计数器。此计数器具备循环计数功能,它是用于显示行扫描同步的。当一行扫描完成,此地址计数器自动加 1,指向下一行扫描数据。RST 复位后 Z 地址计数器为 0。

Z 地址计数器可以用指令 DISPLAY START LINE 预置。因此,显示屏幕的起始行就由此指令控制。即 DD RAM 的数据从哪一行开始显示在屏幕的第一行。此组件的 DD RAM 共64 行,屏幕可以循环显示 64 行。

5-5-2 本模块的控制指令:

1、显示开关控制(DISPLAY ON/OFF)

R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	1	1	1	1	1	D

D=1: 开显示(DISPLAY ON)

D=0: 关显示(DISPLAY OFF)。此时的 DD RAM 内容不变。只要 D=0 变成 D=1 原来的显示就会显示在屏幕上。

2、设置显示起始行

ĺ	R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
I	0	0	1	1	A5	A4	A3	A2	A1	A0

前面在Z地址计数器一节已经描述了显示起始行是由Z地址计数器控制的。A5~A0 6位地址自动送入Z地址计数器.起始行的地址可以是0~63的任意一行。

举例: 选择 A5~A0 是 62,则起始行与 DD RAM 行的对应关系如下:

DD RAM (丁:	62	63	U	1	2	3	 60	61
屏幕显示行:	1	2	3	4	5	6	 63	64

3、设置页地址(SET PAGE "X ADDRESS")

R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	1	1	A2	A1	A0

所谓页地址就是 DD RAM 的行地址。8 行为一页,组件共 64 行即 8 页。 A2~A0 表示 0~7 页。

读写数据对页地址没有影响。页地址由本指令或 RST 信号改变。复位后页地址为 0。 页地址与 DDRAM 的对应关系见地址表。

4、设置Y地址(SETYADDRESS)

ĺ	R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
ĺ	0	0	0	1	A5	A4	A3	A2	A1	A0

此指令的作用是将 A5~A0 送入 Y 地址计数器。 作为 DDRAM 的 Y 地址指针。 在对 DDRAM 进行读写操作后,Y 地址指针自动加 1,指向下一个 DDRAM 单元 。

表 4-4 DDRAM 地 址 表

	CS1=1, CS2=0						CS1=0, CS2=1								
Y=	0	1	2	3		062	63	0	1	2	3	:	62	63	行号
	DB0						DB0	DB0						DB0	0
X=0	\downarrow						\downarrow	\downarrow						\downarrow	\downarrow
	DB7						DB7	DB7						DB7	7
	DB0						DB0	DB0						DB0	8
\downarrow	\downarrow						\downarrow	\downarrow						\downarrow	\downarrow
	DB7						DB7	DB7						DB7	55
	DB0						DB0	DB0						DB0	56
X=7	\downarrow						\downarrow	\downarrow						\downarrow	\downarrow
	DB7						DB7	DB7						DB7	63

5、 读状态(STATUS READ)

R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	0	BF	0	ON/OFF	RST	0	0	0	0

当 RS=1,D/I=0 时,在 E 信号为"H"的作用下,状态分别输出到数据总线(DB7~DB0)的相应位。

BF: 前面已叙述过(见 BF 标志位一节)。

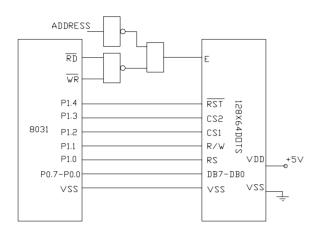
ON/OFF:表示 DFF 触发器的状态(见 DFF 触发器一节)。

RST: RST=1表示内部正在初始化,此时组件不接收任何指令和数据。

6、写显示数据(WRITE DISPLAY DATA)

R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	1	D7	D6	D5	D4	D3	D2	D1	D0

D7-D0 为显示数据。此指令把 D7-D0 写入相应的 DD RAM 单元。Y 地址指针自动加 1。


7、读显示数据(READ DISPLAY DATA)

R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	1	D7	D6	D5	D4	D3	D2	D1	D0

此指令把 DD RAM 的内容 D7-D0 读到数据总线 DB7-DB0。Y 地址指针 自动加 1。 注意,设 DDRAM 地址后读数据时要虚读一次。

5-5-3 模块与 MPU 的接口方法

接口电路如下图所示:

8031 数据口 P0 口直接与液晶显示模块的数据口连接,8031 的 RD,WR 作为液晶显示模块的读,写控制信号,通过与非门连接到 EDM12864-10。

5-5-4 应用程序举例

利用上面的电路举例说明几条指令

R0 为间址寄存器, ID 为指令码, DATA 为显示数据。

1、 显示开/关控制(DISPLAY ON/OFF)

CLR P1

SETB RST

SETB CS1

MOV A,ID

MOVX @R0,A :左 64 列

 \downarrow

CLR CS1

SETB CS2

MOVX @ R0.A :右 64 列

2、读状态

CLR P1

SETB RST

SETB CS1

SETB R/W

MOVX A,@R0 :状态读到 A

3、写显示 RAM 数据(WRITE DISPLAY DATA)

第 12 页 共 17 页

假如 X 地址, Y 地址已设置完成

CLR P1

SETB RST

SETB CS1

SETB D/I

MOV A, # DATA

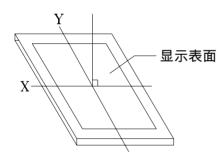
MOVX @R0,A

:数据写入相应 DD RAM 单元

6. 质量等级

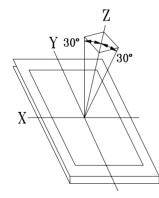
6-1. 检验条件

6-1-1. 检验的环境条件如下:


室内温度: 20±3

湿度: 65 ± 20% RH

6-1-2.外部视觉检验


检验将使用一个 20W 的荧光灯作为照明并且检验者的眼睛距离 LCD 模块应该大于 30cm。

6-1-3 (1)照亮方法

萤光灯垂直干显示表面

(2) 检验距离及角度

从Z轴距X, Y轴Ø = 30°, 距离30±5cm范围内检验。

6-2. 可接受的取样程序列表

缺点类型	取样程序	AQL
	MIL-STD-105D 检验等级 I	
主要缺陷	常规检验	Q/ED-01-98(II)
	个别样品检验	
	MIL-STD-105D 检验等级 I	
次要缺陷	常规检验	Q/ED-01-98(II)
	个别样品检验	

6-3. 缺点等级

6-3-1. 主要缺陷:

主要缺陷指此缺陷需要降级使用。

6-3-2. 次要缺陷:

次要缺点指这种缺陷:虽然背离目前产品的标准,但是与产品的性能无关,可忽略。

6-4. 检验标准

项目	检验标准	缺陷类型			
1) 显示检查	(1) 不显示 (2) 垂直列缺少 (3) 平行缺少 (4) 交叉行缺少	主要			
2) 黑 / 白污点	尺寸 (mm) 可接受的数量 0.3 忽略(note) 0.3 3 0.45 3 0.45 0 (Note)不允许集中 4 个或更多的污点	次要			
黑/白行	长度(mm) 宽度(mm) 可接受的数量 L 10 W 0.03 忽略 5.0 L 10 0.03 <w 0.04<="" td=""> 3 5.0 L 10 0.04<w 0.05<="" td=""> 2 1.0 L 10 0.05<w 0.06<="" td=""> 2 1.0 L 10 0.06<w 0.08<="" td=""> 1 L 10 0.08<w 2)条缺点<="" td="" 下一项第=""> 缺陷间距要大于 20mm</w></w></w></w></w>	次要			
4) 显示图案	缺陷间距要大于 20mm 単位: mm				

第 14 页 共 17 页

LCD 模块使用手册

	尺寸 (mm) 可接受的数量							
	0.7 忽略(note)							
5) 对比度不规则	0.7< 1.0 3							
的点	1.0< 1.5 1	次要						
H 7.W.	1.5< 0							
	Note: 1) 与样品一致							
	2) 缺点间距要大于 30mm							
	尺寸 (mm) 可接受的数量							
	0.4 忽略(note)							
6) 偏光片针眼	0.4< 0.65 2	次要						
	0.65< 1.2 1							
	1.2<							
7) 偏光片凹痕	偏光片上的凹痕和擦痕要求应该同"2)黑/白污点 3) 黑/	が曲						
和擦痕	白行"一致。	次要						
8) LCD 表面污点	即使用软布或类似的清洁物轻轻擦拭也擦不掉。	次要						
9) 彩 虹	在对比度最合适的情况下,不允许在视域内有彩虹。	次要						
10) 视窗缺陷	由于偏光片小或密封圈大,使其暴露在视窗内。	次要						
11)铁框外观	在铁框的可见范围内不允许有铁锈和深度的划伤。	次要						
12) 基板缺点	不能有明显的裂痕。							
,	(1) 装配部件失败							
13) 部件装配	(2) 装配了不符合规范的部件	主要						
,	(3) 比如:极性颠倒,HSC 或 TCP 脱落							
+= // - /)	(1) LSI, IC 管脚宽度大于焊盘宽度 50%	—						
14) 部件定位	(2) LSI, IC 管脚定位偏离焊盘超过 50%	次要						
	(1) 0.45< , N 1	主要						
	(2) 0.3< 0.45, N 1	次要						
15) 焊接缺陷	: 焊球的平均直径(unit: mm)	<i>"</i> .~						
10) /11,22,(12	(3)0.5 <l, 1<="" n="" td=""><td>次要</td></l,>	次要						
	L: 焊接片的平均长度(unit: mm)	<i>"</i> /~						
	(1) PCB 铜铂走线严重损伤,几乎断开。	主要						
16) PCB 板损伤	(2) 铜铂走线轻度损伤。	次要						
	(1) 由于 PCB 板铜铂线断开,每片 PCB 上有 2 处或更多	// 🗴						
17) PCB 修理	处使用明线连接修补。	次要						
1//1 (1)	(2) 短路部分被划开。							
18) 框架爪	框架爪缺少或弯曲	次要						
10) 10水八	(1) 标志或标签错误或不清晰。	八女						
19) 喷码标识	(2) 缺少 1 / 3 以上的标识。	次要						
	(4) 叫2 11 3 以上印7小 15。							

7.可靠性

7-1. 寿命

50,000 小时(25 室内没有太阳照射)

7-2. 可靠性项目

LCD 模块使用手册

项目	条件	标 准
1) 高温操作	65 96hrs	外观无变化,对比度与初始值不会相差
2) 低温操作	-25 96hrs	±20%。 总电流消耗不会超过初始值的 2 倍。.
3) 湿度	40 , 90%RH, 96hrs	
4) 高温储存	70 96hrs	│ `外观无变化,对比度与初始值不会相差
5) 低温	-25 96hrs	,外观儿支化,对比皮与初始值个云伯差。 ±20%。
6) 热冲击	25 30 25 70 5(min) 30(min) 5(min) 30(min) 5 cycle, 55~60%RH	总电流消耗不会超过初始值的 2 倍。.
7) 振动	10~55~10hz amplitude: 1.5mm 2hrs for each direction	外观和性能无变化。 总电流消耗不会超过初始值的 2 倍。

8.生产注意事项

8-1. 装配方法

大连东福公司设计开发的 LCD 模块,其 LCD 面板是由二块贴有偏光片的薄玻璃组成,非常容易被损坏。

由于模块是这种结构,安装是要用线路板上的定位孔。拿 LCD 模块时需格外小心。

8-2. 谨慎处理和清洁 LCD

当清洁 LCD 表面时,使用沾有[下列推荐]溶剂的软布轻轻的擦拭。

● 异丙醇

不能使用干的或硬的布料擦拭 LCD 表面,那将会伤害偏光片的表面。 不能使用下列的溶剂:

- 7K
- 酒精
- 乙烯酮
- 芬芳溶剂

8-3. 防静电措施

LCD 模块使用 C-MOS LSI 驱动, 因此我们建议你:

将不用的输入端连接到 Vdd 或 Vss 上, 开电前不要输入任何信号, 工作区、工具及操作者身体都需接地, 以防静电。

8-4. 包装

- 对于模块应同对待 LCD 一样,避免从高处落下,受到强烈的震动。
- 防止模块老化,模块不能在有阳光直接照射或高温/高湿度条件下操作或储存。

8-5. 谨慎操作

- · 在指定的限制电压下驱动 LCD 模块,因为电压超出限制范围会缩短 LCD模块的使用寿命。
 - 由于使用直流电驱动 LCD 模块会产生化学反应使模块出现不应该的退化, 因此避免用直流电驱动 LCD 模块。
- 当温度低于操作温度范围时,响应时间将被延迟,另一方面工作温度过高,模块显示发黑。但是这些现象并不意味模块本身有故障,在指定的操作温度下模块又会恢复正常。

8-6. 储存

如打算长期储存, 推荐以下方法。

- 放在一个不漏气的密封聚乙烯袋中,不用放干燥剂。
- 放置在一个没有阳光直接照射,且满足储存温度范围的黑地方。
- 储存时不允许有东西碰到偏光片表面。

8-7. 安全

- 将已损坏的或不要的 LCD 敲成碎片,并用异丙醇洗刷掉液晶,然后把它烧掉。
- 当手接触破损的玻璃渗漏出的液晶时,请尽快用水将其洗掉。

9.使用注意事项

- 9-1. 当双方认为有必要时,双方各提供一个样品。 样品经双方证实后,判断才有效。
- 9-2. 在以下场合中, 双方共同讨论来解决问题:
 - 这种规范中出现问题时。
 - 在这规范中没有指明的问题出现时。
 - 当用户的检查条件和工作条件改变,产生了新问题时。
 - 从客户的角度评估,认为产生了新的问题时。